Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Microb Genom ; 9(4)2023 04.
Article in English | MEDLINE | ID: covidwho-20244618

ABSTRACT

High-throughput bacterial genomic sequencing and subsequent analyses can produce large volumes of high-quality data rapidly. Advances in sequencing technology, with commensurate developments in bioinformatics, have increased the speed and efficiency with which it is possible to apply genomics to outbreak analysis and broader public health surveillance. This approach has been focused on targeted pathogenic taxa, such as Mycobacteria, and diseases corresponding to different modes of transmission, including food-and-water-borne diseases (FWDs) and sexually transmitted infections (STIs). In addition, major healthcare-associated pathogens such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci and carbapenemase-producing Klebsiella pneumoniae are the focus of research projects and initiatives to understand transmission dynamics and temporal trends on both local and global scales. Here, we discuss current and future public health priorities relating to genome-based surveillance of major healthcare-associated pathogens. We highlight the specific challenges for the surveillance of healthcare-associated infections (HAIs), and how recent technical advances might be deployed most effectively to mitigate the increasing public health burden they cause.


Subject(s)
Cross Infection , Methicillin-Resistant Staphylococcus aureus , Vancomycin-Resistant Enterococci , Humans , Hospitals , Cross Infection/epidemiology , Cross Infection/microbiology , Klebsiella pneumoniae
2.
Lancet Reg Health West Pac ; 18: 100321, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-2269108

ABSTRACT

The COVID-19 pandemic has increased interest and understanding of the utility of pathogen genomics across the Western Pacific region. Access to genomic data enhances surveillance and response to COVID-19, and will also support surveillance of other infectious diseases and antimicrobial resistant pathogens. Models of access can be determined based on intended purpose, use and sustainability. Achieving equitable access to genomics across the Western Pacific will contribute to the development of a regional public health genomics network to respond to major disease threats in the future.

3.
Virus Evol ; 9(1): vead002, 2023.
Article in English | MEDLINE | ID: covidwho-2234493

ABSTRACT

To investigate genetic signatures of adaptation to the mink host, we characterised the evolutionary rate heterogeneity in mink-associated severe acute respiratory syndrome coronaviruses (SARS-CoV-2). In 2020, the first detected anthropozoonotic spillover event of SARS-CoV-2 occurred in mink farms throughout Europe and North America. Both spill-back of mink-associated lineages into the human population and the spread into the surrounding wildlife were reported, highlighting the potential formation of a zoonotic reservoir. Our findings suggest that the evolutionary rate of SARS-CoV-2 underwent an episodic increase upon introduction into the mink host before returning to the normal range observed in humans. Furthermore, SARS-CoV-2 lineages could have circulated in the mink population for a month before detection, and during this period, evolutionary rate estimates were between 3 × 10-3 and 1.05 × 10-2 (95 per cent HPD, with a mean rate of 6.59 × 10-3) a four- to thirteen-fold increase compared to that in humans. As there is evidence for unique mutational patterns within mink-associated lineages, we explored the emergence of four mink-specific Spike protein amino acid substitutions Y453F, S1147L, F486L, and Q314K. We found that mutation Y453F emerged early in multiple mink outbreaks and that mutations F486L and Q314K may co-occur. We suggest that SARS-CoV-2 undergoes a brief, but considerable, increase in evolutionary rate in response to greater selective pressures during species jumps, which may lead to the occurrence of mink-specific mutations. These findings emphasise the necessity of ongoing surveillance of zoonotic SARS-CoV-2 infections in the future.

4.
Commun Dis Intell (2018) ; 472023 Jan 19.
Article in English | MEDLINE | ID: covidwho-2206061

ABSTRACT

Abstract: Timor-Leste, a small, mountainous half-island nation which shares a land border with Indonesia and which is 550 km from Australia, has a population of 1.3 million and achieved independence for the second time in 2002. It is one of the poorest nations in Asia. In response to the global coronavirus disease 2019 (COVID-19) pandemic, the Timor-Leste Ministry of Health undertook surveillance and contact tracing activities on all notified COVID-19 cases. Between 1 January 2020 and 30 June 2022, there were 22,957 cases of COVID-19 notified which occurred in three waves, the first which was delayed until April 2021 (community transmission of B.1.466.2 variant following major flooding), followed by waves in August 2021 (B.1.617.2 Delta variant transmission) and February 2022 (B.1.1.529 Omicron variant transmission). There were 753 people hospitalised due to COVID-19 and 133 deaths. Of the 133 deaths, 122 (92%) were considered not fully vaccinated (< 2 COVID-19 vaccines) and none had received boosters. Timor-Leste implemented measures to control COVID-19, including: rapid closure of international borders; isolation of cases; quarantining of international arrivals and close contacts; restrictions on internal travel; social and physical distancing; and, finally, a country-wide vaccination program. The health system's capacity was never exceeded.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Timor-Leste/epidemiology , COVID-19 Vaccines , Australia/epidemiology , SARS-CoV-2
5.
Nat Commun ; 13(1): 7003, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2116500

ABSTRACT

Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Genome, Viral/genetics , COVID-19/epidemiology , Pandemics , Genomics
7.
Lancet Reg Health West Pac ; 25: 100487, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1945950

ABSTRACT

Background: COVID-19 has affected many healthcare workers (HCWs) globally. We performed state-wide SARS-CoV-2 genomic epidemiological investigations to identify HCW transmission dynamics and provide recommendations to optimise healthcare system preparedness for future outbreaks. Methods: Genome sequencing was attempted on all COVID-19 cases in Victoria, Australia. We combined genomic and epidemiologic data to investigate the source of HCW infections across multiple healthcare facilities (HCFs) in the state. Phylogenetic analysis and fine-scale hierarchical clustering were performed for the entire dataset including community and healthcare cases. Facilities provided standardised epidemiological data and putative transmission links. Findings: Between March-October 2020, approximately 1,240 HCW COVID-19 infection cases were identified; 765 are included here, requested for hospital investigations. Genomic sequencing was successful for 612 (80%) cases. Thirty-six investigations were undertaken across 12 HCFs. Genomic analysis revealed that multiple introductions of COVID-19 into facilities (31/36) were more common than single introductions (5/36). Major contributors to HCW acquisitions included mobility of staff and patients between wards and facilities, and characteristics and behaviours of patients that generated numerous secondary infections. Key limitations at the HCF level were identified. Interpretation: Genomic epidemiological analyses enhanced understanding of HCW infections, revealing unsuspected clusters and transmission networks. Combined analysis of all HCWs and patients in a HCF should be conducted, supported by high rates of sequencing coverage for all cases in the population. Established systems for integrated genomic epidemiological investigations in healthcare settings will improve HCW safety in future pandemics. Funding: The Victorian Government, the National Health and Medical Research Council Australia, and the Medical Research Future Fund.

8.
Virus Evol ; 8(1): veac033, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1937684

ABSTRACT

The coronavirus disease pandemic has highlighted the utility of pathogen genomics as a key part of comprehensive public health response to emerging infectious diseases threats, however, the ability to generate, analyse, and respond to pathogen genomic data varies around the world. Papua New Guinea (PNG), which has limited in-country capacity for genomics, has experienced significant outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with initial genomics data indicating a large proportion of cases were from lineages that are not well defined within the current nomenclature. Through a partnership between in-country public health agencies and academic organisations, industry, and a public health genomics reference laboratory in Australia a system for routine SARS-CoV-2 genomics from PNG was established. Here we aim to characterise and describe the genomics of PNG's second wave and examine the sudden expansion of a lineage that is not well defined but very prevalent in the Western Pacific region. We generated 1797 sequences from cases in PNG and performed phylogenetic and phylodynamic analyses to examine the outbreak and characterise the circulating lineages and clusters present. Our results reveal the rapid expansion of the B.1.466.2 and related lineages within PNG, from multiple introductions into the country. We also highlight the difficulties that unstable lineage assignment causes when using genomics to assist with rapid cluster definitions.

9.
Access Microbiol ; 4(4): 000346, 2022.
Article in English | MEDLINE | ID: covidwho-1932004

ABSTRACT

Background: Australia's response to the coronavirus disease 2019 (COVID-19) pandemic relies on widespread availability of rapid, accurate testing and reporting of results to facilitate contact tracing. The extensive geographical area of Australia presents a logistical challenge, with many of the population located distant from a laboratory capable of robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. A strategy to address this is the deployment of a mobile facility utilizing novel diagnostic platforms. This study aimed to evaluate the feasibility of a fully contained transportable SARS-CoV-2 testing laboratory using a range of rapid point-of-care tests. Method: A 20 ft (6.1 m) shipping container was refurbished (GeneWorks, Adelaide, South Australia) with climate controls, laboratory benches, hand-wash station and a class II biosafety cabinet. Portable marquees situated adjacent to the container served as stations for registration, sample acquisition and personal protective equipment for staff. Specimens were collected and tested on-site utilizing either the Abbott ID NOW or Abbott Panbio rapid tests. SARS-CoV-2 positive results from the rapid platforms or any participants reporting symptoms consistent with COVID-19 were tested on-site by GeneXpert Xpress RT-PCR. All samples were tested in parallel with a standard-of-care RT-PCR test (Panther Fusion SARS-CoV-2 assay) performed at the public health reference laboratory. In-laboratory environmental conditions and data management-related factors were also recorded. Results: Over a 3 week period, 415 participants were recruited for point-of-care SARS-CoV-2 testing. From time of enrolment, the median result turnaround time was 26 min for the Abbott ID NOW, 32 min for the Abbott Panbio and 75 min for the Xpert Xpress. The environmental conditions of the refurbished shipping container were found to be suitable for all platforms tested, although humidity may have produced condensation within the container. Available software enabled turnaround times to be recorded, although technical malfunction resulted in incomplete data capture. Conclusion: Transportable container laboratories can enable rapid COVID-19 results at the point of care and may be useful during outbreak settings, particularly in environments that are physically distant from centralized laboratories. They may also be appropriate in resource-limited settings. The results of this pilot study confirm feasibility, although larger trials to validate individual rapid point-of-care testing platforms in this environment are required.

10.
Emerg Infect Dis ; 28(7): 1527-1530, 2022 07.
Article in English | MEDLINE | ID: covidwho-1817900

ABSTRACT

Epidemiologic and genomic investigation of SARS-CoV-2 infections associated with 2 repatriation flights from India to Australia in April 2021 indicated that 4 passengers transmitted SARS-CoV-2 to >11 other passengers. Results suggest transmission despite mandatory mask use and predeparture testing. For subsequent flights, predeparture quarantine and expanded predeparture testing were implemented.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Genomics , Humans , Quarantine , SARS-CoV-2/genetics
11.
EBioMedicine ; 79: 103983, 2022 May.
Article in English | MEDLINE | ID: covidwho-1778093

ABSTRACT

BACKGROUND: High testing rates and rapid contact tracing have been key interventions to control COVID-19 in Victoria, Australia. A mobile laboratory (LabVan), for rapid SARS-CoV-2 diagnostics, was deployed at sites deemed critical by the Victorian State Department of Health as part of the response. We describe the process of design, implementation, and performance benchmarked against a central reference laboratory. METHODS: A BSL2 compliant laboratory, complete with a class II biological safety cabinet, was built within a Mercedes-Benz Sprinter Panel Van. Swabs were collected by on-site collection teams, registered using mobile internet-enabled tablets and tested using the Xpert® Xpress SARS-CoV-2 assay. Results were reported remotely via HL7 messaging to Public Health Units. Patients with negative results were automatically notified by mobile telephone text messaging (SMS). FINDINGS: A pilot trial of the LabVan identified a median turnaround time (TAT) from collection to reporting of 1:19 h:mm (IQR 0:18, Range 1:03-18:32) compared to 9:40 h:mm (IQR 8:46, Range 6:51-19:30) for standard processing within the central laboratory. During deployment in nine rural and urban COVID-19 outbreaks the median TAT was 2:18 h:mm (IQR 1:18, Range 0:50-16:52) compared to 19:08 h:mm (IQR 5:49, Range 1:36-58:52) for samples submitted to the central laboratory. No quality control issues were identified in the LabVan. INTERPRETATION: The LabVan is an ISO15189 compliant testing facility fully operationalized for mobile point-of-care testing that significantly reduces TAT for result reporting, facilitating rapid public health actions. FUNDING: This work was supported by the Department of Health, Victoria State Government, Australia.


Subject(s)
COVID-19 , SARS-CoV-2 , Australia , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Point-of-Care Testing , Sensitivity and Specificity
12.
Genome Med ; 13(1): 178, 2021 11 08.
Article in English | MEDLINE | ID: covidwho-1706772

ABSTRACT

Ensuring accordance with principles of healthcare ethics requires improved communication of pathogen genomic data. This could include educating healthcare professionals in communicating pathogen genomic information to individuals, developing ethical frameworks for reporting pathogen genomic results to individuals, responsible media reporting guidelines, and counselling for individuals ('pathogen genetic counselling').


Subject(s)
Genetic Counseling/ethics , Genetic Counseling/methods , Genomics , COVID-19 , Communication , Humans , Public Health , SARS-CoV-2
15.
Clin Infect Dis ; 73(7): e1881-e1884, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455263

ABSTRACT

Healthcare workers are at increased risk of occupational transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report 2 instances of healthcare workers contracting SARS-CoV-2 despite no known breach of personal protective equipment. Additional specific equipment cleaning was initiated. Viral genomic sequencing supported this transmission hypothesis and our subsequent response.


Subject(s)
COVID-19 , Genomics , Humans , Infection Control , Personal Protective Equipment , SARS-CoV-2
16.
Lancet Public Health ; 6(8): e547-e556, 2021 08.
Article in English | MEDLINE | ID: covidwho-1433979

ABSTRACT

BACKGROUND: A cornerstone of Australia's ability to control COVID-19 has been effective border control with an extensive supervised quarantine programme. However, a rapid recrudescence of COVID-19 was observed in the state of Victoria in June, 2020. We aim to describe the genomic findings that located the source of this second wave and show the role of genomic epidemiology in the successful elimination of COVID-19 for a second time in Australia. METHODS: In this observational, genomic epidemiological study, we did genomic sequencing of all laboratory-confirmed cases of COVID-19 diagnosed in Victoria, Australia between Jan 25, 2020, and Jan 31, 2021. We did phylogenetic analyses, genomic cluster discovery, and integrated results with epidemiological data (detailed information on demographics, risk factors, and exposure) collected via interview by the Victorian Government Department of Health. Genomic transmission networks were used to group multiple genomic clusters when epidemiological and genomic data suggested they arose from a single importation event and diversified within Victoria. To identify transmission of emergent lineages between Victoria and other states or territories in Australia, all publicly available SARS-CoV-2 sequences uploaded before Feb 11, 2021, were obtained from the national sequence sharing programme AusTrakka, and epidemiological data were obtained from the submitting laboratories. We did phylodynamic analyses to estimate the growth rate, doubling time, and number of days from the first local infection to the collection of the first sequenced genome for the dominant local cluster, and compared our growth estimates to previously published estimates from a similar growth phase of lineage B.1.1.7 (also known as the Alpha variant) in the UK. FINDINGS: Between Jan 25, 2020, and Jan 31, 2021, there were 20 451 laboratory-confirmed cases of COVID-19 in Victoria, Australia, of which 15 431 were submitted for sequencing, and 11 711 met all quality control metrics and were included in our analysis. We identified 595 genomic clusters, with a median of five cases per cluster (IQR 2-11). Overall, samples from 11 503 (98·2%) of 11 711 cases clustered with another sample in Victoria, either within a genomic cluster or transmission network. Genomic analysis revealed that 10 426 cases, including 10 416 (98·4%) of 10 584 locally acquired cases, diagnosed during the second wave (between June and October, 2020) were derived from a single incursion from hotel quarantine, with the outbreak lineage (transmission network G, lineage D.2) rapidly detected in other Australian states and territories. Phylodynamic analyses indicated that the epidemic growth rate of the outbreak lineage in Victoria during the initial growth phase (samples collected between June 4 and July 9, 2020; 47·4 putative transmission events, per branch, per year [1/years; 95% credible interval 26·0-85·0]), was similar to that of other reported variants, such as B.1.1.7 in the UK (mean approximately 71·5 1/years). Strict interventions were implemented, and the outbreak lineage has not been detected in Australia since Oct 29, 2020. Subsequent cases represented independent international or interstate introductions, with limited local spread. INTERPRETATION: Our study highlights how rapid escalation of clonal outbreaks can occur from a single incursion. However, strict quarantine measures and decisive public health responses to emergent cases are effective, even with high epidemic growth rates. Real-time genomic surveillance can alter the way in which public health agencies view and respond to COVID-19 outbreaks. FUNDING: The Victorian Government, the National Health and Medical Research Council Australia, and the Medical Research Future Fund.


Subject(s)
COVID-19/prevention & control , SARS-CoV-2/genetics , COVID-19/epidemiology , Epidemiologic Studies , Genomics , Humans , SARS-CoV-2/isolation & purification , Victoria/epidemiology
17.
ACS Biomater Sci Eng ; 7(10): 4982-4990, 2021 10 11.
Article in English | MEDLINE | ID: covidwho-1408219

ABSTRACT

The ability to detect SARS-CoV-2 is critical to implementing evidence-based strategies to address the COVID-19 global pandemic. Expanding SARS-CoV-2 diagnostic ability beyond well-equipped laboratories widens the opportunity for surveillance and control efforts. However, such advances are predicated on the availability of rapid, scalable, accessible, yet high-performance diagnostic platforms. Methods to detect viral RNA using reverse transcription loop-mediated isothermal amplification (RT-LAMP) show promise as rapid and field-deployable tests; however, the per-unit costs of the required diagnostic hardware can be a barrier for scaled deployment. Here, we describe a diagnostic hardware configuration for LAMP technology, named the FABL-8, that can be built for approximately US$380 per machine and provide results in under 30 min. Benchmarking showed that FABL-8 has a similar performance to a high-end commercial instrument for detecting fluorescence-based LAMP reactions. Performance testing of the instrument with RNA extracted from a SARS-CoV-2 virus dilution series revealed an analytical detection sensitivity of 50 virus copies per microliter-a detection threshold suitable to detect patient viral load in the first few days following symptom onset. In addition to the detection of SARS-CoV-2, we show that the system can be used to detect the presence of two bacterial pathogens, demonstrating the versatility of the platform for the detection of other pathogens. This cost-effective and scalable hardware alternative allows democratization of the instrumentation required for high-performance molecular diagnostics, such that it could be available to laboratories anywhere-supporting infectious diseases surveillance and research activities in resource-limited settings.


Subject(s)
COVID-19 , RNA, Viral , COVID-19/diagnosis , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , RNA, Viral/isolation & purification , SARS-CoV-2
18.
Open Forum Infect Dis ; 8(9): ofab359, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1405048

ABSTRACT

We describe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immune responses in a patient with lymphoma and recent programmed death 1 (PD-1) inhibitor therapy with late onset of severe coronavirus disease 2019 disease and prolonged SARS-CoV-2 replication, in comparison to age-matched and immunocompromised controls. High levels of HLA-DR+/CD38+ activation, interleukin 6, and interleukin 18 in the absence of B cells and PD-1 expression was observed. SARS-CoV-2-specific antibody responses were absent and SARS-CoV-2-specific T cells were minimally detected. This case highlights challenges in managing immunocompromised hosts who may fail to mount effective virus-specific immune responses.

SELECTION OF CITATIONS
SEARCH DETAIL